Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add filters

Language
Document Type
Year range
1.
Maya HITES; Clément R. MASSONNAUD; Simon JAMARD; François Goehringer; François DANION; Jean REIGNIER; Nathalie DE CASTRO; Denis GAROT; Eva LARRANAGA LAPIQUE; Karine LACOMBE; Violaine TOLSMA; Emmanuel FAURE; Denis MALVY; Therese STAUB; Johan COURJON; France CAZENAVE-ROBLOT; Anne Ma DYRHOL RIISE; Paul LE TURNIER; Guillaume MARTIN BLONDEL; Claire ROGER; Karolina AKINOSOGLOU; Vincent LE MOING; Lionel PIROTH; Pierre SELLIER; Xavier LESCURE; Marius TROSEID; Philippe CLEVENBERGH; Olav DALGARD; Sébastien GALLIEN; Marie GOUSSEFF; Paul LOUBET; Fanny BOUNES - VARDON; Clotilde VISEE; LEILA BELKHIR; Elisabeth BOTELHO-NEVERS; André CABIE; Anastasia KOTANIDOU; Fanny LANTERNIER; Elisabeth ROUVEIX-NORDON; Susana SILVA; Guillaume THIERY; Pascal POIGNARD; Guislaine CARCELAIN; Alpha DIALLO; Noemie MERCIER; Vida TERZIC; Maude BOUSCAMBERT; Alexandre GAYMARD; Mary-Anne TRABAUD; Grégory DESTRAS; Laurence JOSSET; Drifa BELHADI; Nicolas BILLARD; Jeremie GUEDJ; Thi-Hong-Lien HAN; Sandrine COUFFIN-CADIERGUES; Aline DECHANET; Christelle DELMAS; Hélène ESPEROU; Claire FOUGEROU-LEURENT; Soizic LE MESTRE; Annabelle METOIS; Marion NORET; Isabelle BALLY; Sebastián DERGAN-DYLON; Sarah TUBIANA; Ouifiya KALIF; Nathalie BERGAUD; Benjamin LEVEAU; Joe EUSTACE; Richard GREIL; Edit HAJDU; Monika HALANOVA; José Artur PAIVA; Anna PIEKARSKA; Jesus RODRIGUEZ BANO; Kristian TONBY; Milan TROJANEK; Sotirios TSIODRAS; Serhat UNAL; Charles BURDET; Dominique COSTAGLIOLA; Yazdan YAZDANPANAH; Nathan PEIFFER-SMADJA; France MENTRE; Florence ADER.
medrxiv; 2024.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2024.02.23.24302586

ABSTRACT

Background Tixagevimab and cilgavimab (AZD7442) are two monoclonal antibodies developed by AstraZeneca for the pre-exposure prophylaxis and treatment of patients infected by SARS-CoV-2. Its effectiveness and safety in patients hospitalized with COVID-19 was not known at the outset of this trial. Methods DisCoVeRy is a phase 3, adaptive, multicentre, randomized, controlled trial conducted in 63 sites in Europe. Participants were randomly assigned (1:1) to receive placebo or tixagevimab-cilgavimab in addition to standard of care. The primary outcome was the clinical status at day 15 measured by the WHO seven-point ordinal scale. Several clinical, virological, immunological and safety endpoints were also assessed. Findings Due to slow enrolment, recruitment was stopped on July 1st, 2022. The antigen positive modified intention-to-treat population (mITT) was composed of 173 participants randomized to tixagevimab-cilgavimab (n=91) or placebo (n=82), 91.9% (159/173) with supplementary oxygen, and 47.4% (82/173) previously vaccinated at inclusion. There was no significant difference in the distribution of the WHO ordinal scale at day 15 between the two groups (odds ratio (OR) 0.93, 95%CI [0.54-1.61]; p=0.81) nor in any clinical, virological or safety secondary endpoints. In the global mITT (n=226), neutralization antibody titers were significantly higher in the tixagevimab-cilgavimab group/patients compared to placebo at day 3 (Least-square mean differences (LSMD) 1.44, 95% Confidence interval (CI) [1.20-1.68]; p < 10-23) and day 8 (LSMD 0.91, 95%CI [0.64-1.18]; p < 10-8) and it was most important for patients infected with a pre-omicron variant, both at day 3 (LSMD 1.94, 95% CI [1.67-2.20], p < 10-25) and day 8 (LSMD 1.17, 95% CI [0.87-1.47], p < 10-9), with a significant interaction (p < 10-7 and p=0.01 at days 3 and 8, respectively). Interpretation There were no significant differences between tixagevimab-cilgavimab and placebo in clinical endpoints, however the trial lacked power compared to prespecified calculations. Tixagevimab-cilgavimab was well tolerated, with low rates of treatment related events.


Subject(s)
COVID-19
2.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.11.22.22282628

ABSTRACT

Background Influenza disease data remain scarce in middle and lower-income countries. We used data from the Global Influenza Hospital Surveillance Network (GIHSN), a prospective multi-country surveillance system from 2012-2019, to assess differences in the epidemiology and severity of influenza hospitalizations by country income level. Methods We compiled individual-level data on acute respiratory hospitalizations, with standardized clinical reporting and testing for influenza. Adjusted odds ratios (aORs) for influenza-associated intensive care unit (ICU) admission and in-hospital death were estimated with multivariable logistic regression that included country income group (World Bank designation: high-income countries: HIC; upper middle-income countries: UMIC; lower middle-income countries: LMIC), age, sex, number of comorbidities, influenza subtype and lineage, and season as covariates. Findings From 73,121 patients hospitalized with respiratory illness in 22 countries, 15,660 were laboratory-confirmed for influenza. After adjustment for patient-level covariates, there was a two-fold increased risk of ICU admission for patients in UMIC (aOR 2.31; 95% confidence interval (CI) 1.85-2.88, p < 0.001), and a 5-fold increase in LMIC (aOR 5.35; 95% CI 3.98-7.17, p < 0.001), compared to HIC. The risk of in-hospital death in HIC and UMIC was comparable (UMIC: aOR 1.14; 95% 0.87-1.50; p > 0.05), though substantially lower than that in LMIC (aOR 5.05; 95% 3.61-7.03; p < 0.001 relative to HIC). A similar severity increase linked to country income was found in influenza-negative patients. Interpretation We found significant disparities in influenza severity among hospitalized patients in countries with limited resources, supporting global efforts to implement public health interventions. Funding The GIHSN is partially funded by the Foundation for Influenza Epidemiology (France). This analysis was funded by Ready2Respond under Wellcome Trust grant 224690/Z/21/Z. Research in Context Evidence before this study In the past 35 years, fewer than 10% of peer-reviewed articles on influenza burden of disease have reported analyses from lower middle- or lower-income settings. Whereas the impact of influenza in upper middle- and high-income countries – regions where influenza seasonality is well-defined and where high numbers of influenza-related clinic visits, hospital admissions, and deaths are well-documented – has been clearly quantified, data scarcity has challenged our ability to ascertain influenza burden in resource-limited settings. As a result, policy decisions on vaccine use in lower-income countries have been made with limited data, slowing the development of influenza vaccine recommendations in these settings. In this study, we have conducted prospective influenza surveillance in the hospital setting in multiple countries to assess potential geographic differences in the severity of influenza admissions and have shown that influenza is a global concern, and report poorer clinical outcomes among patients admitted to hospitals in resource-limited settings. In these settings, it is especially important to consider the role of preventive measures, such as vaccines, in providing protection against severe disease. Added value of this study Since 2012, in collaboration with over 100 clinical sites worldwide, the Global Influenza Hospital Surveillance Network (GIHSN) has provided patient-level data on severe influenza-like illnesses based on a core protocol and consistent case definitions. To our knowledge, this is the first study to analyze multiple years of global, patient-level data generated by prospective, hospital-based surveillance across a large number of countries to investigate geographic differences in both influenza morbidity and mortality. Our study provides information on influenza burden in under-researched populations, particularly those in lower middle-income countries, and highlights the need for continued global collaboration and unified protocols to better understand the relationships between socio-economic development, healthcare, access to care, and influenza morbidity and mortality. After adjustment for differences in the characteristics of individual patients admitted to the hospital for influenza, we find an increased severity of disease in lower-income settings. In particular, the risk of ICU admissions increases two- and five-fold in upper middle- and lower-middle income countries, compared to high-income countries. The risk of in-hospital death is five-fold higher in lower-middle income countries, compared to more affluent countries. Implications of all the available evidence We find evidence of increased severity in influenza admissions in lower-income countries, which could point at structural differences in access to care between countries (patients arriving at the hospital later in the disease process) and/or differences in care once in the hospital. Understanding the mechanisms responsible for these disparities will be important to improve management of influenza, optimize vaccine allocation, and mitigate global disease burden. The Global Influenza Hospital Surveillance Network serves as an example of a collaborative platform that can be expanded and leveraged to address geographic differences in the epidemiology and severity of influenza, especially in lower and upper middle-income countries.


Subject(s)
Respiratory Insufficiency , Death
4.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.03.21.22271747

ABSTRACT

The novel coronavirus has infected millions of people all around the world and has posed a great risk to global health. Rapid and accurate tests are needed to take early precautions and control the disease. The most routinely used method is real time polymerase chain reaction (RT-PCR) which stands as the gold standard in the detection of SARS-COV-2 viral RNA. However, robust assays as accurate as RT-PCR have been developed for rapid diagnosis and efficient control of the spread of the disease. Reverse transcriptase loop-mediated isothermal amplification (RT-LAMP) is one of the time-saving, accurate and cost-effective alternative methods to RT-PCR. In this study, we study the improved RT-LAMP colorimetric assay (N-Fact) to detect SARS-COV-2 viral RNA within 30 minutes using a primer sets special to N gene. Moreover, RT-LAMP colorimetric assay is subjected to authorized clinical studies to test its ability to detect COVID-19 in its early phases. The results reveal RT-LAMP colorimetric assay is an efficient, robust, and rapid assay to be used as in vitro diagnostic tool display competitiveness compared to RT-PCR.


Subject(s)
COVID-19
5.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.07.28.21261159

ABSTRACT

Background: BNT162b2 is a lipid nanoparticle-formulated, nucleoside-modified RNA vaccine encoding a prefusion-stabilized, membrane-anchored SARS-CoV-2 full-length spike protein. BNT162b2 is highly efficacious against COVID-19 and is currently authorized for emergency use or conditional approval worldwide. At the time of authorization, data beyond 2 months post-vaccination were unavailable. Methods: In an ongoing, placebo-controlled, observer-blinded, multinational, pivotal efficacy study, 44,165 [≥]16-year-old participants and 2,264 12-15-year-old participants were randomized to receive 2 doses, 21 days apart, of 30 g BNT162b2 or placebo. Study endpoints reported here are vaccine efficacy (VE) against laboratory-confirmed COVID-19 and safety data, both up to 6 months post-vaccination. Results: BNT162b2 continued to be safe and well tolerated. Few participants had adverse events leading to study withdrawal. VE against COVID-19 was 91% (95% CI 89.0-93.2) through up to 6 months of follow-up, among evaluable participants and irrespective of previous SARS-CoV-2 infection. VE of 86%-100% was seen across countries and in populations with diverse characteristics of age, sex, race/ethnicity, and COVID-19 risk factors in participants without evidence of previous SARS-CoV-2 infection. VE against severe disease was 97% % (95% CI 80.3-99.9). In South Africa, where the SARS-CoV-2 variant of concern, B.1.351 (beta), was predominant, 100% (95% CI 53.5, 100.0) VE was observed. Conclusion: With up to 6 months of follow-up and despite a gradually declining trend in vaccine efficacy, BNT162b2 had a favorable safety profile and was highly efficacious in preventing COVID-19. (ClinicalTrials.gov number, NCT04368728)


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL